If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2=-32t=0
We move all terms to the left:
16t^2-(-32t)=0
We get rid of parentheses
16t^2+32t=0
a = 16; b = 32; c = 0;
Δ = b2-4ac
Δ = 322-4·16·0
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-32}{2*16}=\frac{-64}{32} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+32}{2*16}=\frac{0}{32} =0 $
| 5v=-8 | | 7y-7=4y+21 | | 2(2x+7)=2+2x | | 6vv=1 | | c−–35/9=9 | | 4-2y-4y=16 | | x+8=-48 | | 9c+21=93 | | 2v^2+4v-7=0 | | -19=h/4+-15 | | 3(2t–6)=‐2(3t–9) | | 5a-0=55 | | (4x+6)+(4x+6)=115 | | 5x+13=-2x+34 | | s/9+57=61 | | {3.75}{x}={3}3.75x=3 | | 10(w+58)=60 | | x/5=56/35 | | –4+5q=–3q−4 | | s9+ 57=61 | | 10x^2+8x=x^2 | | 7y+3-2y=17 | | 18=5x—2 | | 7y+3-2=17 | | 2x+7+45+90=180 | | 25=11x | | -1(-5+7k)=-35+k | | 4z2+24z=68 | | 4 | | s÷3=1.7 | | 5(-5n-6)+7(5-4n)=58 | | 4 |